Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production.

نویسندگان

  • Yongjing Lin
  • Corsin Battaglia
  • Mathieu Boccard
  • Mark Hettick
  • Zhibin Yu
  • Christophe Ballif
  • Joel W Ager
  • Ali Javey
چکیده

An amorphous Si thin film with TiO2 encapsulation layer is demonstrated as a highly promising and stable photocathode for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0.93 V vs RHE and saturation photocurrent of 11.6 mA/cm(2) are measured. Importantly, the a-Si photocathodes exhibit impressive photocurrent of ~6.1 mA/cm(2) at a large positive bias of 0.8 V vs RHE, which is the highest for all reported photocathodes at such positive potential. Ni-Mo alloy is demonstrated as an alternative low-cost catalyst with onset potential and saturation current similar to those obtained with platinum. This low-cost photocathode with high photovoltage and current is a highly promising photocathode for solar hydrogen production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INVITED FEATURE PAPERS a-Si:H/lc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production

Thin film silicon tandem junction solar cells based on amorphous silicon (a-Si:H) and microcrystalline silicon (lc-Si:H) were developed with focus on high open-circuit voltages for the application as photocathodes in integrated photoelectrochemical cells for water electrolysis. By adjusting various parameters in the plasma enhanced chemical vapor deposition process of the individual lc-Si:H sin...

متن کامل

Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approa...

متن کامل

Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution†

An np-Si microwire array coupled with a two-layer catalyst film consisting of Ni–Mo nanopowder and TiO2 light-scattering nanoparticles has been used to simultaneously achieve high fill factors and lightlimited photocurrent densities from photocathodes that produce H2(g) directly from sunlight and water. The TiO2 layer scattered light back into the Si microwire array, while optically obscuring t...

متن کامل

High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution.

Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply co...

متن کامل

Earth‐Abundant Tin Sulfide‐Based Photocathodes for Solar Hydrogen Production

Tin-based chalcogenide semiconductors, though attractive materials for photovoltaics, have to date exhibited poor performance and stability for photoelectrochemical applications. Here, a novel strategy is reported to improve performance and stability of tin monosulfide (SnS) nanoplatelet thin films for H2 production in acidic media without any use of sacrificial reagent. P-type SnS nanoplatelet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 13 11  شماره 

صفحات  -

تاریخ انتشار 2013